
Algorithms for generating design sequences

The algorithm described in Appendix 1 of Nonyane and Theobald (2007) is intended for
finding the complete set of design sequences for a specified number of symbols n with the
properties A and B defined in Section 2 of that paper: it has been used to find these sets
for n equal to 6 and 7. We have not run it to completion for larger values of n: instead we
generate sequences chosen by a random process from the complete set, although this process
is not guaranteed to give every valid sequence the same probability of selection. In the first of
the following algorithms, the initial sequence comprises symbols which are chosen at random.

Thus there are two versions of the program: one (the ‘random’ version) generates a new
random initial sequence whenever a valid sequence is found, and the other (the ‘systematic’
version) continues until all valid sequences are found, if run for a sufficiently long period. In
both programs, it is convenient to use symbols numbered from 0 to n − 1 rather than from
1 to n, and to increase each symbol by 1 before displaying the sequences.

Random algorithm

We follow the rules listed below in order, except where a ‘go to’ or ‘stop’ instruction is given.
We use j to index a position in the sequence (j = 0, 1, . . . , n2), and s(j) to denote the
symbol (0, 1, . . . or n-1) at that position. The sequence is regarded as comprising an initial
symbol 0, followed by n ‘blocks’ each of length n, the first of which is (0, 1, . . . , n-1). Runs
of the program use different random initial sequences (except by chance), so a re-run of the
program will not give the same set of valid sequences in the same order.

When the program starts:

Get from the user the number of symbols (n) and the time (in seconds) that the program
is allowed to run (maxtime).

Set to 0 the number of valid sequences found so far (count) and the number of them with
the lowest values of criteria (4) and (5) of Nonyane and Theobald (2007) (nfound).

Set the lowest criterion values found so far (mincrit4 and mincrit5) to huge values.

Set the start of the current block (bmark) to n+1.

Create an array found() of size 2n ×(n2+1) to store the best valid sequences that have
been found. The number of these is assumed to be no more than 2n.

Now do the search:

RES. Generate a random initial sequence a() of n2+1 symbols as

0, 0, 1, . . . , n-1, n-1, a(n+2), a(n+3), . . . , a(n2)

in which a(n+2), a(n+3), . . . , a(n2) are selected with probabilities n−1 from the sym-
bols 0, 1, . . . , n-1 independently of each other and of previous initial sequences. Copy
a() to the working array s().

Start at position j = n+2, i.e. the second position in the second block.

1



PT1. If s(j) is equal to s(j-1)+1, or s(j) already appears in the current block, or the
pair (s(j-1), s(j)) already appears in the sequence, go to step PT2. [The first check
is applied because all pairs of the form (s(j), s(j)+1) are in the first block.]

If we have not reached the end of a block (i.e. if j modulo n > 0), increment j, set s(j)

= a(j) and go to step PT1.

If we have reached the end of the last block (i.e. j = n2), we have found a valid sequence.
Go to step FOU.

We have reached the end of a block that is not the last block. If s(j) does not appear at
the end of any earlier block, set s(j+1) = s(j), increment j, mark j as the start of
the current block, and go to step PT1.

PT2. Replace s(j) by {s(j)+1} modulo n. If s(j) 6= a(j) then go to step PT1.

s(j) has now gone back to its starting value a(j). So we need to move back a place and
start again. Decrease j by 1.

If j = n+1, we are at the beginning of the second block, so we have not found any possible
valid sequences: go to step FIN.

If j modulo n = 1, we are at the beginning of a block, so set j-n as the start of the current
block, set s(j-1) = a(j-1), and decrease j by 2.

Go to step PT2.

FOU. We have found a valid sequence. Increase the number of such sequences that have
been found (count). Calculate the criterion values (crit4 and crit5).

If the new sequence is better than any that have been found so far (i.e. either (crit5
< mincrit5) or (crit5 = mincrit5 and crit4 < mincrit4)), store the sequence in
found(0,*), set nfound = 1, and go to step TIM.

If the new sequence is as good as the best found so far (i.e. crit5 = mincrit5 and crit4

= mincrit4) then see if the sequence has been stored in found(): if it has not, store
it and increment nfound.

TIM. If there is time left to generate more sequences, go to step RES.

FIN. Increase each symbol by 1 in the found() array. Display in the output the best
criterion values, the contents of the found() array, and the number of valid sequences
that have been found.

Stop.

Systematic algorithm

The program for systematic searches works in a similar way, except that a(n+2), a(n+3),
. . . , a(n2) are replaced by 0. When a valid sequence is found the program displays it with
its criterion values, and continues searching without creating a new initial sequence. Unless
a time restriction is imposed, the program runs until all valid sequences have been found.

designseqalgs.pdf

2


