Document details for 'FAIR data pipeline: provenance-driven data management for traceable scientific workflows'

Authors Mitchell, S.N., Lahiff, A., Cummings, N., Hollocombe, J., Boskamp, BB, Field, R., Reddyhoff, D., Zarebski, K., Wilson, A., Viola, B., Burke, M, Archibald, B., Bessell, P.R., Blackwell, R., Boden, L.A., Brett, A., Brett, S., Dundas, R., Enright, J., Gonzalez-Beltran, A.N., Harris, C, Hinder, I., Hughes, C.D., Knight, M.A., Mano, V., McMonagle, C., Mellor, D.J., Mohr, S., Marion, G., Matthews, L., McKendrick, I.J., Pooley, C. M., Porphyre, T., Reeves, A., Townsend, E., Turner, R., Walton, J. and Reeve, R.
Publication details Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 380, 20210300. Royal Society Publshing.
Publisher details Royal Society Publshing
Keywords FAIR data, provenance, traceable scientific workflows
Abstract Modern epidemiological analyses to understand and combat the spread of disease depend critically on access to, and use of, data. Rapidly evolving data, such as data streams changing during a disease outbreak, are particularly challenging. Data management is further complicated by data being imprecisely identified when used. Public trust in policy decisions resulting from such analyses is easily damaged and is often low, with cynicism arising where claims of 'following the science' are made without accompanying evidence. Tracing the provenance of such decisions back through open software to primary data would clarify this evidence, enhancing the transparency of the decision-making process. Here, we demonstrate a Findable, Accessible, Interoperable and Reusable (FAIR) data pipeline. Although developed during the COVID-19 pandemic, it allows easy annotation of any data as they are consumed by analyses, or conversely traces the provenance of scientific outputs back through the analytical or modelling source code to primary data. Such a tool provides a mechanism for the public, and fellow scientists, to better assess scientific evidence by inspecting its provenance, while allowing scientists to support policymakers in openly justifying their decisions. We believe that such tools should be promoted for use across all areas of policy-facing research.
Last updated 2022-08-16
  1. FAIR_Data_Pipeline_2022.pdf

Unless explicitly stated otherwise, all material is copyright © Biomathematics and Statistics Scotland.

Biomathematics and Statistics Scotland (BioSS) is formally part of The James Hutton Institute (JHI), a registered Scottish charity No. SC041796 and a company limited by guarantee No. SC374831. Registered Office: JHI, Invergowrie, Dundee, DD2 5DA, Scotland