Document details for 'Rates of production and utilisation of lactate by microbial communities from the human colon'

Authors Belenguer, A., Holtrop, G., Duncan, S.H., Anderson, S.E., Calder, A.G., Flint, H.J. and Lobley, G.E.
Publication details FEMS Microbiology Ecology 77(1), 107-119.
Keywords colonic bacteria; human health; lactate metabolism; stable isotope
Abstract Lactate metabolism was studied in mixed bacterial communities using single-stage continuous flow fermentors inoculated with faecal slurries from four different volunteers and run for 6 days at pH 5.5 and 6.0, using carbohydrates, mainly starch, as substrates. A continuous infusion of [U-13C]starch and l-[3-13C]lactate was performed on day 5 and a bolus injection of l-[3-13C]lactate plus dl-lactate on day 6. Short-chain fatty acids and lactate concentrations plus enrichments and numbers of lactate-producing and -utilizing bacteria on day 5 were measured. Faecal samples were also collected weekly over a 3-month period to inoculate 24-h batch culture incubation at pH 5.9 and 6.5 with carbohydrates alone or with 35 mmol L-1 lactate. In the fermentors, the potential lactate disposal rates were more than double the formation rates, and lactate concentrations usually remained below detection. Lactate formation was greater (P < 0.05) at the lower pH, with a similar tendency for utilization. Up to 20% of butyrate production was derived from lactate. In batch cultures, lactate was also efficiently used at both pH values, especially at 6.5, although volunteer and temporal variability existed. Under healthy gut environmental conditions, bacterial lactate disposal seems to exceed production markedly.
Last updated 2015-04-16

Unless explicitly stated otherwise, all material is copyright © Biomathematics and Statistics Scotland.

Biomathematics and Statistics Scotland (BioSS) is formally part of The James Hutton Institute (JHI), a registered Scottish charity No. SC041796 and a company limited by guarantee No. SC374831. Registered Office: JHI, Invergowrie, Dundee, DD2 5DA, Scotland