Document details for 'A unified approach to model selection using the likelihood ratio test'

Authors Lewis, F.I., Butler, A. and Gilbert, L.
Publication details Methods in Ecology and Evolution 2(2), 155-162.
Abstract 1. Ecological count data typically exhibit complexities such as over-dispersion and zero-inflation, and are often weakly associated with a relatively large number of correlated covariates. The use of an appropriate statistical inference model is therefore essential. A common selection criteria for choosing between nested models is the likelihood ratio test (LRT). Widely used alternatives to the LRT are based on information-theoretic metrics such as the Akaike Information Criterion (AIC). 2. It is widely believed that the LRT can only be used to compare the performance of nested models - i.e. in situations where one model is a special case of another. There are many situations in which it is important to compare non-nested models, so, if true, this would be a substantial drawback of using LRTs for model comparison. In reality, however, it is actually possible to use the LRT for comparing both nested and non-nested models. This fact is well established in the statistical literature, but not widely used in ecological studies. 3. The main obstacle to the use of the LRT with non-nested models has, until relatively recently, been the fact that we cannot explicitly write down a formula for the distribution of the likelihood ratio test statistic under the null hypothesis that one of the models is true. With modern computing power it is possible to overcome this difficulty by using a simulation-based approach. 4. To demonstrate the practical application of the LRT to both nested and non-nested model comparisons, we use a case study involving data on questing tick Ixodes ricinus) abundance. These data contain complexities typical in ecological analyses, such as zero-inflation and over-dispersion, for which comparison between models of differing structure - e.g. non-nested models - is of particular importance. We also apply the method to simulated count data, and compare the results against those obtained using information theoretic approaches. 5. Choosing between competing statistical models is an essential part of any applied ecological analysis. The likelihood ratio test is a standard statistical test for comparing nested models. By use of simulation the likelihood ratio test can also be used in an analogous fashion to compare non-nested models, thereby providing a unified approach for model comparison within the null hypothesis testing paradigm. We provide a simple practical guide in how to apply this approach to the key models required in the analyses of count data.
Last updated 2012-03-14

Unless explicitly stated otherwise, all material is copyright © Biomathematics and Statistics Scotland.

Biomathematics and Statistics Scotland (BioSS) is formally part of The James Hutton Institute (JHI), a registered Scottish charity No. SC041796 and a company limited by guarantee No. SC374831. Registered Office: JHI, Invergowrie, Dundee, DD2 5DA, Scotland