STANDARD ERRORS IN SYSTEMATIC SAMPLING

Chris Glasbey & Stijn Bierman

Biomathematics and Statistics Scotland
How many acorns are under an oak tree?
Standard estimator of total is

\[\hat{T} = \frac{N}{m} \sum_{i=1}^{m} y_i \]

where \(N = 36^2, \quad m = 12^2 \)

(NB We are only interested in the total, not in interpolating \(y \)'s)

But what is its variance?

Two frameworks for inference:

1) Design based: Assume unobserved array of \(y \)'s is fixed, and only stochasticity is due to sampling

2) Model based: Assume \(y \)'s are a single realisation from a super-population of possible arrays

But, for systematic sampling, there is no design-based, unbiased estimator of \(\text{var}(\hat{T} - T) \)
1. Design-based inference

If we had sampled at random:

\[\text{var}(\hat{T} - T) = \left(1 - \frac{m}{N}\right) \frac{N^2}{m} \hat{\sigma}^2, \quad \text{where} \quad \hat{\sigma}^2 = \frac{1}{m - 1} \sum_{i=1}^{m} (y_i - \bar{y})^2, \]

is an unbiased estimator with \((m - 1)\) d.f., where \(\sigma^2\) is variance of \(y\) array.
From randomisation, \(\text{var}(\hat{T} - T) = y^T Q y \), with \(y \) arranged as vector

For random sampling

\[
Q = \begin{pmatrix}
8, & -\epsilon, & -\epsilon, & -\epsilon, & -\epsilon, & \ldots \\
-\epsilon, & 8, & -\epsilon, & -\epsilon, & -\epsilon, & \ldots \\
-\epsilon, & -\epsilon, & 8, & -\epsilon, & -\epsilon, & \ldots \\
-\epsilon, & -\epsilon, & -\epsilon, & 8, & -\epsilon, & \ldots \\
\vdots & \vdots & \vdots & \vdots & \ddots & \ddots
\end{pmatrix}
\]

\(\epsilon = 0.0062 \)

Whereas for systematic sampling

\[
Q = \begin{pmatrix}
8, & -1, & -1, & 8, & -1, & \ldots \\
-1, & 8, & -1, & -1, & 8, & \ldots \\
-1, & -1, & 8, & -1, & -1, & \ldots \\
8, & -1, & -1, & 8, & -1, & \ldots \\
\vdots & \vdots & \vdots & \vdots & \ddots & \ddots
\end{pmatrix}
\]

In the absence of trend, and if “covariances” decay with distance, systematic sampling is most efficient (Bellman, 1977)
For this problem we know the truth, a complete census:

\[T = 85306 \text{ acorns} \]

(Approximated from Aubry and Debouzie, *Ecology*, 2000.)

So we can conduct a simulation study.
<table>
<thead>
<tr>
<th>sampling design</th>
<th>rmse</th>
<th>d.f.</th>
<th>conf. width</th>
</tr>
</thead>
<tbody>
<tr>
<td>systematic</td>
<td>2000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>random</td>
<td>8900</td>
<td>143</td>
<td>35000</td>
</tr>
</tbody>
</table>
Two other types of design with unbiased estimators of $\text{var}(\hat{T} - T)$:

- **replicated systematic**
 - d.f. = 3

- **stratified**
 - d.f. $\leq \frac{m}{2}$
<table>
<thead>
<tr>
<th>sampling design</th>
<th>rmse</th>
<th>d.f.</th>
<th>conf. width</th>
</tr>
</thead>
<tbody>
<tr>
<td>systematic</td>
<td>2000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-rep systematic</td>
<td>2600</td>
<td>3</td>
<td>15000</td>
</tr>
<tr>
<td>2-sample strata</td>
<td>3600</td>
<td>12</td>
<td>16000</td>
</tr>
<tr>
<td>random</td>
<td>8900</td>
<td>143</td>
<td>35000</td>
</tr>
</tbody>
</table>

We could pretend systematic design was one of other three, to obtain var

If we believe that the systematic design is the most efficient one

But if there are trends it may not be!
For example, if the data were elevations, such as:

<table>
<thead>
<tr>
<th>sampling design</th>
<th>rmse</th>
<th>d.f.</th>
<th>conf. width</th>
</tr>
</thead>
<tbody>
<tr>
<td>systematic</td>
<td>370</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-rep systematic</td>
<td>380</td>
<td>3</td>
<td>2300</td>
</tr>
<tr>
<td>2-sample strata</td>
<td>110</td>
<td>10</td>
<td>500</td>
</tr>
<tr>
<td>random</td>
<td>410</td>
<td>143</td>
<td>1640</td>
</tr>
</tbody>
</table>
2. Model-based inference

Model for trend:

\[f_{ij} = \beta_1 \exp \left[-\frac{1}{2} \left(\frac{\log r_{ij} - \beta_4}{\beta_5} \right)^6 \right] \]

\[r_{ij} = \sqrt{ (i - \beta_2)^2 + (j - \beta_3)^2 } \]

Fit by maximising Poisson quasi-likelihood, \(\sum (y \log f - f) \), and \(\hat{T}_f = \sum \hat{f}_{ij} \)
<table>
<thead>
<tr>
<th>sampling design</th>
<th>rmse \hat{T}</th>
<th>rmse \hat{T}_f</th>
</tr>
</thead>
<tbody>
<tr>
<td>systematic</td>
<td>2000</td>
<td>2000</td>
</tr>
<tr>
<td>4-rep systematic</td>
<td>2600</td>
<td>2000</td>
</tr>
<tr>
<td>2-sample strata</td>
<td>3600</td>
<td>2800</td>
</tr>
<tr>
<td>random</td>
<td>8900</td>
<td>3600</td>
</tr>
</tbody>
</table>
Isotropic exponential model for autocorrelation of errors, estimated from standardised residuals \(\hat{e} = (y - \hat{f})/\hat{f} \)

\[
\hat{T}_c = E(T \mid \hat{f}, \hat{e})
\]
<table>
<thead>
<tr>
<th>sampling design</th>
<th>rmse \hat{T}</th>
<th>rmse \hat{T}_f</th>
<th>rmse \hat{T}_c</th>
</tr>
</thead>
<tbody>
<tr>
<td>systematic</td>
<td>2000</td>
<td>2000</td>
<td>2100</td>
</tr>
<tr>
<td>4-rep systematic</td>
<td>2600</td>
<td>2000</td>
<td>2000</td>
</tr>
<tr>
<td>2-sample strata</td>
<td>3600</td>
<td>2800</td>
<td>2700</td>
</tr>
<tr>
<td>random</td>
<td>8900</td>
<td>3600</td>
<td>3400</td>
</tr>
</tbody>
</table>

Estimate $\text{var}(\hat{T}_c - T)$ by simulation, using a parametric bootstrap.
3. Summary

For design-based inference with acorn data:

- Systematic sampling is unknowably most precise. In absence of trend, other designs give conservative estimates
- 4-rep systematic and 2-sample stratified designs produce shortest confidence intervals

Model-based inference reduces design effects, but at the cost of subjective assumptions

- In new applications, what is best design, best \hat{T} and $\text{vâr}(\hat{T} - T)$?
- Are there other designs with unbiased vâr?
- How should we deal with trend?