Document details for 'Quantitative trait loci mapping of polyphenol metabolites in blackcurrant (Ribes nigrum L.)'

Authors Abreu, I., Brennan, R.M., Kanichukattu, EN., Stewart, D., Hancock, R.D., McDougall, G. and Hackett, C.A.
Publication details Metabolomics 16, 25. Springer.
Publisher details Springer
Keywords Blackcurrant, QTL, polyphenols, metabolites
Abstract Introduction Commercially, blackcurrants (Ribes nigrum L.) are grown mainly for processing, especially for juice production. They are valued for their high levels of polyphenols, especially anthocyanins, which contribute to their characteristic deep colour, but also as a good source of vitamin C. Recently, evidence has accrued that polyphenols, such as anthocyanins, may have specific human health benefits. Objective The aims of this study were to investigate the genetic control of polyphenols and other key juice processing traits in blackcurrants. Methods The levels, over two years, of vitamin C, citrate, malate, succinate, total organic acids, total anthocyanins and total phenolics together with 46 mainly polyphenol metabolites were measured in a blackcurrant biparental mapping population. Quantitative trait loci (QTLs) for these traits were mapped onto a high-density SNP linkage map. Results At least one QTL was detected for each trait, with good consistency between the two years. Clusters of QTLs were found on each of the eight linkage groups (LG). For example, QTLs for the major anthocyanidin glucosides, delphinidin-3-O-glucoside and cyanidin-3-O-glucoside, co-localised with a QTL for total anthocyanin content on LG3 whereas the major anthocyanidin rutinosides, delphinidin-3-O-rutinoside and cyanidin-3-O-rutinoside , had QTLs on LG1 and LG2. Many of the QTLs explained a high proportion of the trait variation, with the most significant region, on LG3 at ~35cM, explaining more than 60% of the variation in the coumaroylated metabolites, Cyanidin-coumaroyl-glucose, Delphinidin-coumaroyl-glucose, Kaempferol-coumaroyl-glucose and Myricetin-coumaroyl-glucose. Conclusion The identification of robust QTLs for key polyphenol classes and individual polyphenols in blackcurrant provides great potential for marker-assisted breeding for improved levels of key components.
Last updated 2020-02-07

Unless explicitly stated otherwise, all material is copyright © Biomathematics and Statistics Scotland.

Biomathematics and Statistics Scotland (BioSS) is formally part of The James Hutton Institute (JHI), a registered Scottish charity No. SC041796 and a company limited by guarantee No. SC374831. Registered Office: JHI, Invergowrie, Dundee, DD2 5DA, Scotland