Document details for 'Complex responses to movement-based disease control: When livestock trading helps'

Authors Prentice, J.C., Marion, G., Hutchings, M.R., McNeilly, T. and Matthews, L.
Publication details Journal of the Royal Society Interface 14, 20160531. Royal Society Publshing.
Publisher details Royal Society Publshing
Keywords basic reproduction ratio, Escherichia coli O157, bovine viral diarrhoea virus, Mycobacterium avium ssp. paratuberculosis, heterogeneity, supershedder
Abstract Livestock disease controls are often linked to movements between farms, for example, via quarantine and pre- or post-movement testing. Designing effective controls, therefore, benefits from accurate assessment of herd-to-herd transmission. Household models of human infections make use of R*, the number of groups infected by an initial infected group, which is a metapopulation level analogue of the basic reproduction number R0 that provides a better characterization of disease spread in a metapopulation. However, existing approaches to calculate R* do not account for individual movements between locations which means we lack suitable tools for livestock systems. We address this gap using next-generation matrix approaches to capture movements explicitly and introduce novel tools to calculate R* in any populations coupled by individual movements. We show that depletion of infectives in the source group, which hastens its recovery, is a phenomenon with important implications for design and efficacy of movement-based controls. Underpinning our results is the observation that R* peaks at intermediate livestock movement rates. Consequently, under movement-based controls, infection could be controlled at high movement rates but persist at intermediate rates. Thus, once control schemes are present in a livestock system, a reduction in movements can counterintuitively lead to increased disease prevalence. We illustrate our results using four important livestock diseases (bovine viral diarrhoea, bovine herpes virus, Johne's disease and Escherichia coli O157) that each persist across different movement rate ranges with the consequence that a change in livestock movements could help control one disease, but exacerbate another.
Last updated 2018-05-18
  1. DOI

Unless explicitly stated otherwise, all material is copyright © Biomathematics and Statistics Scotland.

Biomathematics and Statistics Scotland (BioSS) is formally part of The James Hutton Institute (JHI), a registered Scottish charity No. SC041796 and a company limited by guarantee No. SC374831. Registered Office: JHI, Invergowrie, Dundee, DD2 5DA, Scotland