Source distribution modelling for end-member mixing in hydrology

Abstract

End-member mixing (EMM) is a method in hydrology for attempting to define the runoff sources in river catchments. It involves estimation of the relative proportions of water from different sources, and is often recorded as a time series. Given regular measurements of a chemical tracer on the target water body and, in addition, corresponding measurements for samples of known sources, it is possible to perform end-member mixing using Bayesian models taking (essentially) a random effects approach in a hierarchical framework, including covariates if appropriate. This paper considers the case where there are no separate data available for the source components, and develops a model for source distributions via nonlinear regression on the tracer/flow relationship and nonparametric density estimation. We allow these source component distributions to vary from year to year and apply the model to a data set from two streams in central Scotland, comprised of weekly or fortnightly readings over seventeen years. We conclude there is evidence of a change in source distribution over time; that corresponding to low flow conditions exhibits a gradual increase in alkalinity for both of two streams studied, whereas for high flow conditions alkalinity appeared to be rising for only one stream.

Year
2011
Category
Refereed journal
Output Tags
SG 2006-2011 WP 3.4 Methods to Assess Water Quality
WP2.3 - Effectiveness of measures to manage water quality and pollution